
Los Alamos National Laboratory

SNNzkSNARK: An Efficient Design and Implementation of
a Secure Neural Network Verification System Using zkSNARKs

 Zachary DeStefano A-4
Villanova University

We present an efficient and succinct zero-knowledge proof application
using zkSNARKs for remotely verifying the forward-pass execution of an
arbitrarily-sized neural network with hidden inputs and model parameters.
Our zero-knowledge guarantee allows the prover to hide information about
the input and model parameters from the verifier while being able to attest to
the integrity of these parameters and the model's execution.

Our approach is transformative for various applications such as nuclear
treaty verification without the need to disclose sensitive data, security
camera auditing without the need to leak footage, and secure patient
diagnosis without the need to disclose individually identifiable health
information. We demonstrate an end-to-end implementation of this proof
system using custom gadgets in libsnark on a neural network for the
classification of MNIST handwritten digits.

Abstract

Above is a process view of our program’s architecture. Arrows indicate
the flow of data through the architecture, and also indicate which component
(prover, verifier, or both) has access to the data.

In building the neural network verification system, we programmed a
series of gadgets (program building blocks which execute and verify a
specific computation given certain inputs and outputs) which provide the
functionality required to efficiently execute and verify the execution of a
neural network. These gadgets were built specifically for any size feed-
forward neural network.

System Architecture and Design

We present and demonstrate an optimized architecture and
implementation for the efficient execution and remote verification of feed-
forward neural networks and their inputs. Our implementation is heavily
optimized with the largest number of constraints coming from the hashing
algorithm and digital signature verification scheme. This program currently
uses fewer constraints than would be generated from the compilation from a
general circuit. We suggest the following avenues for future research which
either expand on this project or would aid with increasing the efficiency of
zkSNARK construction.
1) Implement additional neural network features which effectively leverage
 the structure of R1CS constraints, such as convolutions.
2) Implement a neural network specific compiler and optimizer for the
 reduction from Computation to R1CS
3) Develop a method that is more efficient than QAPs or SSPs for the
 expansion of R1CS to a Linear PCP
4) Develop and Implement a post-quantum secure zkSNARK construction
 scheme and implement post-quantum cryptographic gadgets in R1CS

Conclusion and Future Work

Problem Statement
Neural Networks are increasingly being used for decision making and

analysis; however, there does not exist an efficient method for remotely
verifying the execution of a neural network or for hiding information about a
neural network such as input or weights while maintaining verification of
the providence of these hidden values.

Background
A Zero-Knowledge Proof (π) is a way to prove a claim without leaking
details about why the claim is true.

With Soundness:
And Completeness:

A zkSNARK is a
 - zero-knowledge: No secret information is revealed by the proof
 - Succinct: The size of the proof that is generated is small :
 - Non-interactive: no challenge-response protocol
 - ARgument of Knowledge: It is computationally intractable for the prover

 to produce a fake proof

A zkSNARK can be compiled from a R1CS (Rank 1 Constraint System)
 - R1CS: an expression or system of expressions in the form:

(S • A) * (S • B) - (S • C) = 0
Where S is a vector containing the values of all of the variables

To prevent forged proofs, a computation must be fully constrained
 - A problem is fully constrained iff for any input the system of constraints
 does not allow any false output to satisfy all constraints

Neural NetworkNeural Network

Input Hash:
0x0D5394498EC5602F7D29DEC1A114CB39

Model Signature (256 Bytes):
A6 2E 94 84 6B 41 8F 69 89 34 E4 92 ... 9F 45

Output Weights:
0:(0.00000) 1:(0.03225) 2:(0.23016) 3:(0.00000)
4:(0.00011) 5:(0.00078) 6:(0.00000) 7:(0.99761)
8:(0.03148) 9:(0.00000)

ZK Proof:
11011100 11000101 00100101 01100111...00001010

Results

The following example output is a succinct version of what the verifier
receives. Note that the signature and proof are truncated, and the input
image is provided here as a reference despite being hidden completely from
the verifier. This is example output for a fully connected feed-forward
neural network with three layers of 784, 32, and 10 nodes respectively
trained on MNIST.

Secret Input:

We constructed and tested a large number of reusable gadgets for a
variety of operations from logic gate verification to full neural network
execution and RSA signature checking. Below is a hierarchical taxonomy of
our gadgets.

Fully Secure Neural Network

Neural Network Components RSA Signature Verification

Two’s Complement
Fixed Point Math

Merkle-Damgård
Hash Construction

Fast Large Integer
Cryptography Math

Fixed Point
Decompression

MNIST Demo Stats Setup Time
(128 Threads)

Setup Ram Prover Time Proving Key Size

With RSA 5-10 min 80 GB >1 min 30 GB

Without RSA 3-5 min 12 GB <10 seconds 2 GB

Computation

Arithmetic
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

The standard pipeline for the creation of zkSNARK generators and
verifiers from general computation involves the pipeline (right). Due to the

R1CS Optimization Strategies

size of the pipeline, there is a large computational
overhead that gets introduced in terms of both memory
and total running time In this project, we wrote the
program directly as a R1CS and perform optimizations
firstly over the number of constraints and second over the
size of the constraints to allow for larger and more
complicated computations to be executed and verified
with a smaller memory footprint.

For example, a traditional addition circuit with N
full-adders to complete an N-bit addition requires ~5N
constraints (5 per full-adder), but by taking advantage
of the structure of R1CS, we reduce this addition to
N+2 constraints with N+1 bitness checks (output bits
and carry) and the following large constraint:

∑
i=0

N −1

2i (ai+b i−c i)=2N t

This is an example of the level of simplification achievable on
a single simple operation. It is possible to make use of the structure of
combinations to reduce some operations by a quadratic factor with this
technique.

One technique that we have developed for finding the least number of
constraints required to fully constrain a problem is to reduce the problem to
the least number of required multiplications between variables. Using this,
we can easily calculate a soft lower bound for the number of constraints
required to achieve to fully constrain an operation or system of operations.

φ (x⃗)=⊥⇒ Pr [Ver (π)=⊤]≤negl(x⃗)
φ (x⃗)=⊤⇒ Pr [Ver (π)=⊤]=1

π says "∃ s⃗ , i⃗n : P(i⃗n , ⃗out , s⃗)=⊤" for any computable property P

(i⃗n , o⃗ut , s⃗)

O (1)

In response to this problem, in this work, we present an efficient system
for the remote verification of the execution of a neural network and the
verification of the input to this program. We demonstrate the functionality of
this program on the toy problem of digit classification using the MNIST
database of handwritten digits.

DoE
NN Model

Signing Authority

1010110
0010011
0110111
0011010
1101010
0110

?1010110001
0011011011
1001101011
0101001100
0001011010
1001000100
111101001

Neural
Network
Input

Unverifiable Data
Presumably from NN

(Mentors: Michael Dixon and Juston Moore)

LA-UR-19-27783

